
Notes for B.Tech.(Electronics) 5th
sem on interrupts
EC-504 (unit-4)

Rachana Pathak

IEJU,Gwalior-474011

Interrupt / Interrupt sources
• It is a sub-routine calls that given by the microcontroller when some other

program with high priority is requested for acquiring the system buses
than interrupt occur in current running program.

• Interrupts provide a method to postpone or delay the current process,
performs a sub-routine task and then restart the standard program again.

• 8051 has 5 sources of interrupts

Interrupt Structure

Interrupt Handling/ Interrupt Vector
• To distinguish between various interrupts and executing different code

depending on what interrupt was triggered 8051may be jumping to a fixed
address when a given interrupt occurs.

Interrupt Handling/ Interrupt Vector

• If Timer 0 overflows (i.e., the TF0 bit is set), the main program will be
temporarily suspended and control will jump to 000BH if we have code at
address 0003H that handles the situation of Timer 0 overflowing.

Interrupt Flag Interrupt handler address

External 0 IE0 0003H

Timer0 TF0 000BH

External1 IE1 0013H

Timer1 TF1 001BH

Serial RI/TI 0023H

Setting Up Interrupts
• By default at power up, all interrupts are disabled. Even if, for example,

the TF0 bit is set, the 8051 will not execute the interrupt. Your program
must specifically tell the 8051 that it wishes to enable interrupts and
specifically which interrupts it wishes to enable.

• Your program may enable and disable interrupts by modifying the IE
register.

• IE: Interrupt Enable Register

Setting Up Interrupts
• Each of the 8051’sinterrupts has its own bit in the IE register. You enable a

given interrupt by setting the corresponding bit. For example, if you wish
to enable Timer 1 Interrupt, you would execute either:

MOV IE,#08h || SETB ET1

• Both of the above instructions set bit 3 of IE, thus enabling Timer 1
Interrupt. Once Timer 1 Interrupt is enabled, whenever the TF1 bit is set,
the 8051 will automatically put "on hold” the main program and execute
the Timer 1 Interrupt Handler at address 001Bh. However, before Timer 1
Interrupt (or any other interrupt) is truly enabled, you must also set bit 7
of IE.

• Bit 7, the Global Interrupt Enable/Disable, enables or disables all
interrupts simultaneously. That is to say, if bit 7 is cleared then no
interrupts will occur, even if all the other bits of IE are set. Setting bit 7 will
enable all the interrupts that have been selected by setting other bits in IE.

Continue…

• This is useful in program execution if you have time-critical code that
needs to execute. In this case, you may need the code to execute from
start to finish without any interrupt getting in the way. To accomplish this
you can simply clear bit 7 of IE (CLR EA) and then set it after your time
critical code is done.

• To enable the Timer 1 Interrupt execute the following two instructions:

SETB ET1

SETB EA

• Thereafter, the Timer 1 Interrupt Handler at 01Bh will automatically be
called whenever the TF1 bit is set (upon Timer 1 overflow).

Polling Sequence

• The 8051 automatically evaluates whether an interrupt should occur after
every instruction.

• When checking for interrupt conditions, it checks them in the following
order:

1) External 0 Interrupt

2) Timer 0 Interrupt

3) External 1 Interrupt

4) Timer 1 Interrupt

5) Serial Interrupt

Interrupt Priorities
• The 8051 offers two levels of interrupt priority: high and low. By using

interrupt priorities you may assign higher priority to certain interrupt
conditions. For example, you may have enabled Timer 1 Interrupt which is
automatically called every time Timer 1 overflows.

• Additionally, you may have enabled the Serial Interrupt which is called every
time a character is received via the serial port. However, you may consider
that receiving a character is much more important than the timer interrupt.
In this case, if Timer 1 Interrupt is already executing you may wish that the
serial interrupt itself interrupts the Timer 1 Interrupt. When the serial
interrupt is complete, control passes back to Timer 1 Interrupt and finally
back to the main program. You may accomplish this by assigning a high
priority to the Serial Interrupt and a low priority to the Timer 1 Interrupt.

• Interrupt priorities are controlled by the IP register . The IP register has the
following format:

IP: Interrupt priority register

interrupt priorities
• When considering interrupt priorities, the following rules apply:

• Nothing can interrupt a high-priority interrupt--not even another high
priority interrupt.

• A high-priority interrupt may interrupt a low priority interrupt.

• A low-priority interrupt may only occur if no other interrupt is already
executing.

• If two interrupts occur at the same time, the interrupt with higher priority
will execute first. If both interrupts are of the same priority the interrupt
which is serviced first by polling sequence will be executed first.

When an Interrupt Occurs?

• When an interrupt is triggered, the following actions are taken
automatically by the microcontroller:

• The current Program Counter is saved on the stack, low-byte first.

• Interrupts of the same and lower priority are blocked.

• In the case of Timer and External interrupts, the corresponding interrupt
flag is set.

• Program execution transfers to the corresponding interrupt handler vector
address.

• The Interrupt Handler Routine executes. Take special note of the third
step: If the interrupt being handled is a Timer or External interrupt, the
microcontroller automatically clears the interrupt flag before passing
control to your interrupt handler routine.

When an Interrupt Ends?

• An interrupt ends when your program executes the RETI instruction. When
the RETI instruction is executed the following actions are taken by the
microcontroller:

• Two bytes are popped off the stack into the Program Counter to restore
normal program execution.

• Interrupt status is restored to its pre-interrupt status.

